Supervisor View 2021-2022

Fellowship Call for 2019
October 12, 2018
ICAT One Health Study Day Registration
February 29, 2024

Full NameProfessor Miguel A. Valvano

Wellcome-Wolfson Institute for Experimental Medicine

Queen's University Belfast

Webpage:publish.uwo.ca

Email Address:Email hidden; Javascript is required.

Research Fields
  • genetics, genomics and molecular biology
  • infectious disease and the immune system
Postgrad Medical Specialties
  • Medicine
  • Surgery
  • Emergency Medicine
  • Paediatrics
Medical Subspecialties
  • Gastroenterology
  • Infectious diseases
  • Immunology
  • Respiratory Medicine
My Work

We have made seminal contributions in the molecular pathogenesis of the opportunistic CF pathogen Burkholderia cenocepacia and gained international recognition as a leader in Burkholderia research. We described for the first time the biology of the Burkholderia cenocepacia infection in macrophages. We also developed novel genetic tools that allow us to manipulate and better understand this difficult organism, elucidated the role of lipopolysaccharide in antimicrobial resistance, and discovered all the components of a general protein glycosylation pathway in Burkholderia (unpublished work). Pioneering studies demonstrated that Burkholderia strains could survive in macrophages within a specialized vacuole that delays the fusion with the phagolysosome and has properties of an arrested autophagosome. We also identified the T6SS effector protein TecA, which disarms Rho type GTPases and causes the activation of the pyrin inflammasome. Also, we have contributed to elucidate mechanisms of high-level multidrug antibiotic resistance in B. cenocepacia, in particular a novel mechanism of extracellular resistance based on bacterially secreted molecules that can scavenge antibiotics outside the cell.

An, S-q., J. Murtagh, K.B. Twomey, M.K. Gupta, T.P. O'Sullivan, R. Ingram, M.A. Valvano*,Ji-l. Tang. 2019. Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies diffusible signal factor analogues. Nature Communications 10:2334. doi: 10.1038/s41467-019-10271.

El-Halfawy, O.E., J. Klett, R.J. Ingram, S.A. Loutet, M.E.P. Murphy, S. Martín-Santamaría, and M.A. Valvano*. 2017. Antibiotic capture by bacterial lipocalins uncovers an extracellular mechanism of intrinsic antibiotic resistance. mBio 017 Mar 14;8(2). pii: e00225-17. doi: 10.1128/mBio.00225-17.

Aubert, D.F., X. Hao, J. Yang, X. Shi, W. Gao, L. Li, F. Bisaro, S. Chen, M.A. Valvano*, and F. Shao*. 2016. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome. Cell Host & Microbe 19:664-674.